Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 165
1.
Clin Ther ; 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38670885

BACKGROUND: Since 2014, several clinical studies focusing on centronuclear myopathies have been conducted, including a prospective natural history study, a gene transfer clinical trial and a clinical trial using an antisense oligonucleotide. Dedicated patient organizations have played an important role in this process. The experience of members of these organizations, either as a study participant, parent or as a patient organization member communicating with the sponsors are potentially very informative for future trial design. METHODS: We investigated the burden of and the lessons learned from the first natural history studies and clinical trials from a patient perspective using a qualitative approach. We arranged 4 focus groups with a total of 37 participants from 3 large international patient organizations: ZNM-ZusammenStark!, the Myotubular Trust, and the MTM-CNM Family Connection. 4 themes, based on a systematic literature search were discussed: Expectations and preparation, Clinical study participation, Communication and Recommendations for future clinical trials. The focus group recordings were transcribed, anonymized, and uploaded to Atlas-ti version 8.1 software. The data were analyzed using a thematic content analysis. RESULTS: Overall, participants were realistic in their expectations, hoping for small improvements of function and quality of life. The realization that trial participation does not equate to a treatment was challenging. Participating in a clinical study had a huge impact on many aspects of daily life, both for patients and their immediate families. First-hand insights into the burden of the design and its possible effect on performance were provided, resulting in numerous compelling recommendations for future clinical studies. Furthermore, participants stressed the importance of clear communication, which was considered to be especially vital in cases of severe adverse events. Finally, while patients were understanding of the importance of adhering to the regulations of good clinical practice, they indicated that they would strongly appreciate a greater understanding and/or acknowledgment of the patient perspective and a reflection of this perspective in future clinical trial design. CONCLUSION: The acknowledgment and inclusion of patients' perspectives and efficient and effective communication is expected to improve patient recruitment and retention in future clinical studies, as well as more accurate assessment of the patient performance related to suitable planning of the study visits.

2.
Nat Genet ; 56(3): 395-407, 2024 Mar.
Article En | MEDLINE | ID: mdl-38429495

In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases.


Muscular Diseases , Zebrafish , Animals , Humans , Male , Connectin/genetics , Connectin/metabolism , Muscle, Skeletal , Muscular Diseases/genetics , Muscular Diseases/metabolism , Muscular Diseases/pathology , Mutation , Zebrafish/genetics
4.
Neuromuscul Disord ; 38: 1-7, 2024 May.
Article En | MEDLINE | ID: mdl-38290938

The design of a clinical trial for a rare disease can be challenging. An optimal study design is required to effectively study the clinical outcomes for possible therapies for these types of disorders. Understanding the study participants' experiences as well as barriers and facilitators of participation are important to optimize future research and to inform clinical trial management. Centronuclear myopathies (CNMs) including X-linked myotubular myopathy (XLMTM) are a group of rare congenital myopathies for which there is no cure currently. Since 2014, a number of natural history studies and clinical trials have been conducted in CNMs. Two trials have been prematurely terminated because of severe adverse events. Since no research has been conducted regarding trial experience in CNM, we performed a scoping literature research on clinical trial experience of patients with neuromuscular disorders in general. The most common barriers to trial participation of patients comprise concerns about potential harmful effects, opportunity loss and the expected burden on daily life. The most common facilitators were an expected benefit on the disease course, altruism and collateral benefit. While several results are in line with trial experiences of other types of patients, for example oncological patients, distinctions can be made for patients with CNM and other neuromuscular disorders. However, the limited availability of relevant literature suggests that future (qualitative) research should focus on trial experiences in CNM patients.


Clinical Trials as Topic , Myopathies, Structural, Congenital , Neuromuscular Diseases , Rare Diseases , Humans , Myopathies, Structural, Congenital/therapy , Neuromuscular Diseases/therapy , Patient Participation
5.
Lancet Reg Health Eur ; 37: 100817, 2024 Feb.
Article En | MEDLINE | ID: mdl-38169987

Background: Real-world data on the efficacy and safety of onasemnogene abeparvovec (OA) in spinal muscular atrophy (SMA) are needed, especially to overcome uncertainties around its use in older and heavier children. This study evaluated the efficacy and safety of OA in patients with SMA type 1 in the UK, including patients ≥2 years old and weighing ≥13.5 kg. Methods: This observational cohort study used data from patients with genetically confirmed SMA type 1 treated with OA between May 2021 and January 2023, at 6 infusion centres in the United Kingdom. Functional outcomes were assessed using age-appropriate functional scales. Safety analyses included review of liver function, platelet count, cardiac assessments, and steroid requirements. Findings: Ninety-nine patients (45 SMA therapy-naïve) were treated with OA (median age at infusion: 10 [range, 0.6-89] months; median weight: 7.86 [range, 3.2-20.2] kg; duration of follow-up: 3-22 months). After OA infusion, mean ± SD change in CHOP-INTEND score was 11.0 ± 10.3 with increased score in 66/78 patients (84.6%); patients aged <6 months had a 13.9 points higher gain in CHOP-INTEND score than patients ≥2 years (95% CI, 6.8-21.0; P < 0.001). Asymptomatic thrombocytopenia (71/99 patients; 71.7%), asymptomatic troponin-I elevation (30/89 patients; 33.7%) and transaminitis (87/99 patients; 87.9%) were reported. No thrombotic microangiopathy was observed. Median steroid treatment duration was 97 (range, 28-548) days with dose doubled in 35/99 patients (35.4%). There were 22.5-fold increased odds of having a transaminase peak >100 U/L (95% CI, 2.3-223.7; P = 0.008) and 21.2-fold increased odds of steroid doubling, as per treatment protocol (95% CI, 2.2-209.2; P = 0.009) in patients weighing ≥13.5 kg versus <8.5 kg. Weight at infusion was positively correlated with steroid treatment duration (r = 0.43; P < 0.001). Worsening transaminitis, despite doubling of oral prednisolone, led to treatment with intravenous methylprednisolone in 5 children. Steroid-sparing immunosuppressants were used in 5 children to enable steroid weaning. Two deaths apparently unrelated to OA were reported. Interpretation: OA led to functional improvements and was well tolerated with no persistent clinical complications, including in older and heavier patients. Funding: Novartis Innovative Therapies AG provided a grant for independent medical writing services.

6.
Neuromuscul Disord ; 35: 42-52, 2024 Feb.
Article En | MEDLINE | ID: mdl-38061948

The Myotubular and Centronuclear Myopathy Registry is an international research database containing key longitudinal data on a diverse and growing cohort of individuals affected by this group of rare and ultra-rare neuromuscular conditions. It can inform and support all areas of translational research including epidemiological and natural history studies, clinical trial feasibility planning, recruitment for clinical trials or other research studies, stand-alone clinical studies, standards of care development, and provision of real-world evidence data. For ten years, it has also served as a valuable communications tool and provided a link between the scientific and patient communities. With the anticipated advent of disease-modifying therapies for these conditions, the registry is a key resource for the generation of post-authorisation data for regulatory decision-making, real world evidence, and patient-reported outcome measures. In this paper we present some key data from the current 444 registered individuals with the following genotype split: MTM1 n=270, DNM2 n=42, BIN1 n=4, TTN n=4, RYR1 n=12, other n=4, unknown n=108. The data presented are consistent with the current literature and the common understanding of a strong genotype/phenotype correlations in CNM, most notably the data supports the current knowledge that XLMTM is typically the most severe form of CNM. Additionally, we outline the ways in which the registry supports research, and, more generally, the importance of continuous investment and development to maintain the relevance of registries for all stakeholders. Further information on the registry and contact details are available on the registry website at www.mtmcnmregistry.org.


Muscle, Skeletal , Myopathies, Structural, Congenital , Humans , Translational Research, Biomedical , Dynamin II/genetics , Genotype , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/therapy
8.
Neuromuscul Disord ; 33(11): 866-872, 2023 Nov.
Article En | MEDLINE | ID: mdl-37919205

Compartment syndrome (CS) is a medical emergency that occurs secondary to excessively high pressures within a confined fibro-osseous space, resulting in reduced perfusion and subsequent tissue injury. CS can be divided into acute forms, most commonly due to trauma and considered an orthopaedic emergency, and chronic forms, most commonly presenting in athletes with recurrent exercise-induced pain. Downstream pathophysiological mechanisms are complex but do share commonalities with mechanisms implicated in genetic neuromuscular disorders. Here we present 3 patients with recurrent CS in the context of a RYR1-related disorder (n = 1) and PYGM-related McArdle disease (n = 2), two of whom presented many years before the diagnosis of an underlying neuromuscular disorder was suspected. We also summarize the literature on previously published cases with CS in the context of a genetically confirmed neuromuscular disorder and outline how the calcium signalling alterations in RYR1-related disorders and the metabolic abnormalities in McArdle disease may feed into CS-causative mechanisms. These findings expand the phenotypical spectrum of RYR1-related disorders and McArdle disease; whilst most forms of recurrent CS will be sporadic, above and other genetic backgrounds ought to be considered in particular in patients where other suggestive clinical features are present.


Compartment Syndromes , Fibromyalgia , Glycogen Storage Disease Type V , Neuromuscular Diseases , Humans , Glycogen Storage Disease Type V/diagnosis , Ryanodine Receptor Calcium Release Channel/genetics , Compartment Syndromes/etiology , Compartment Syndromes/genetics , Neuromuscular Diseases/diagnosis , Neuromuscular Diseases/genetics , Neuromuscular Diseases/complications , Fibromyalgia/complications
9.
Neuromuscul Disord ; 33(10): 769-775, 2023 Oct.
Article En | MEDLINE | ID: mdl-37783627

Mutations in RYR1 encoding the ryanodine receptor (RyR) skeletal muscle isoform (RyR1) are a common cause of inherited neuromuscular disorders. Despite its expression in a wide range of tissues, non-skeletal muscle manifestations associated with RYR1 mutations have only been rarely reported. Here, we report three patients with a diagnosis of Central Core Disease (CCD), King-Denborough Syndrome (KDS) and Malignant Hyperthermia Susceptibility (MHS), respectively, who in addition to their (putative) RYR1-related disorder also developed symptoms and signs of acute pancreatitis. In two patients, episodes were recurrent, with severe multisystem involvement and sequelae. RyR1-mediated calcium signalling plays an important role in normal pancreatic function but has also been critically implicated in the pathophysiology of acute pancreatitis, particularly in bile acid- and ethanol-induced forms. Findings from relevant animal models indicate that pancreatic damage in these conditions may be ameliorated through administration of the specific RyR1 antagonist dantrolene and other compounds modifying pancreatic metabolism including calcium signalling. These observations suggest that patients with RYR1 gain-of-function variants may be at increased risk of developing acute pancreatitis, a condition which should therefore be considered in the health surveillance of such individuals.


Malignant Hyperthermia , Pancreatitis , Animals , Humans , Acute Disease , Calcium/metabolism , Malignant Hyperthermia/genetics , Mutation , Pancreatitis/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism
10.
Genes (Basel) ; 14(10)2023 09 25.
Article En | MEDLINE | ID: mdl-37895210

Biallelic variants in the Golgi SNAP receptor complex member 2 gene (GOSR2) have been reported in progressive myoclonus epilepsy with neurodegeneration. Typical clinical features include ataxia and areflexia during early childhood, followed by seizures, scoliosis, dysarthria, and myoclonus. Here, we report two novel patients from unrelated families with a GOSR2-related disorder and novel genetic and clinical findings. The first patient, a male compound heterozygous for the GOSR2 splice site variant c.336+1G>A and the novel c.364G>A,p.Glu122Lys missense variant showed global developmental delay and seizures at the age of 2 years, followed by myoclonus at the age of 8 years with partial response to clonazepam. The second patient, a female homozygous for the GOSR2 founder variant p.Gly144Trp, showed only mild fine motor developmental delay and generalized tonic-clonic seizures triggered by infections during adolescence, with seizure remission on levetiracetam. The associated movement disorder progressed atypically slowly during adolescence compared to its usual speed, from initial intention tremor and myoclonus to ataxia, hyporeflexia, dysmetria, and dystonia. These findings expand the genotype-phenotype spectrum of GOSR2-related disorders and suggest that GOSR2 should be included in the consideration of monogenetic causes of dystonia, global developmental delay, and seizures.


Dystonia , Dystonic Disorders , Myoclonic Epilepsies, Progressive , Myoclonus , Adolescent , Child , Child, Preschool , Female , Humans , Male , Ataxia/genetics , Mutation , Myoclonic Epilepsies, Progressive/genetics , Qb-SNARE Proteins/genetics , Seizures
11.
NPJ Genom Med ; 8(1): 28, 2023 Sep 28.
Article En | MEDLINE | ID: mdl-37770509

Elevated impulsivity is a key component of attention-deficit hyperactivity disorder (ADHD), bipolar disorder and juvenile myoclonic epilepsy (JME). We performed a genome-wide association, colocalization, polygenic risk score, and pathway analysis of impulsivity in JME (n = 381). Results were followed up with functional characterisation using a drosophila model. We identified genome-wide associated SNPs at 8q13.3 (P = 7.5 × 10-9) and 10p11.21 (P = 3.6 × 10-8). The 8q13.3 locus colocalizes with SLCO5A1 expression quantitative trait loci in cerebral cortex (P = 9.5 × 10-3). SLCO5A1 codes for an organic anion transporter and upregulates synapse assembly/organisation genes. Pathway analysis demonstrates 12.7-fold enrichment for presynaptic membrane assembly genes (P = 0.0005) and 14.3-fold enrichment for presynaptic organisation genes (P = 0.0005) including NLGN1 and PTPRD. RNAi knockdown of Oatp30B, the Drosophila polypeptide with the highest homology to SLCO5A1, causes over-reactive startling behaviour (P = 8.7 × 10-3) and increased seizure-like events (P = 6.8 × 10-7). Polygenic risk score for ADHD genetically correlates with impulsivity scores in JME (P = 1.60 × 10-3). SLCO5A1 loss-of-function represents an impulsivity and seizure mechanism. Synaptic assembly genes may inform the aetiology of impulsivity in health and disease.

12.
Acta Physiol (Oxf) ; 239(2): e14035, 2023 10.
Article En | MEDLINE | ID: mdl-37602753

AIM: Conditions related to mutations in the gene encoding the skeletal muscle ryanodine receptor 1 (RYR1) are genetic muscle disorders and include congenital myopathies with permanent weakness, as well as episodic phenotypes such as rhabdomyolysis/myalgia. Although RYR1 dysfunction is the primary mechanism in RYR1-related disorders, other downstream pathogenic events are less well understood and may include a secondary remodeling of major contractile proteins. Hence, in the present study, we aimed to investigate whether congenital myopathy-related RYR1 mutations alter the regulation of the most abundant contractile protein, myosin. METHODS: We used skeletal muscle tissues from five patients with RYR1-related congenital myopathy and compared those with five controls and five patients with RYR1-related rhabdomyolysis/myalgia. We then defined post-translational modifications on myosin heavy chains (MyHCs) using LC/MS. In parallel, we determined myosin relaxed states using Mant-ATP chase experiments and performed molecular dynamics (MD) simulations. RESULTS: LC/MS revealed two additional phosphorylations (Thr1309-P and Ser1362-P) and one acetylation (Lys1410-Ac) on the ß/slow MyHC of patients with congenital myopathy. This method also identified six acetylations that were lacking on MyHC type IIa of these patients (Lys35-Ac, Lys663-Ac, Lys763-Ac, Lys1171-Ac, Lys1360-Ac, and Lys1733-Ac). MD simulations suggest that modifying myosin Ser1362 impacts the protein structure and dynamics. Finally, Mant-ATP chase experiments showed a faster ATP turnover time of myosin heads in the disordered-relaxed conformation. CONCLUSIONS: Altogether, our results suggest that RYR1 mutations have secondary negative consequences on myosin structure and function, likely contributing to the congenital myopathic phenotype.


Muscular Diseases , Myosin Heavy Chains , Rhabdomyolysis , Ryanodine Receptor Calcium Release Channel , Humans , Adenosine Triphosphate/metabolism , Muscle, Skeletal/metabolism , Muscular Diseases/pathology , Mutation , Myalgia/metabolism , Myalgia/pathology , Myosin Heavy Chains/genetics , Protein Processing, Post-Translational , Rhabdomyolysis/metabolism , Ryanodine Receptor Calcium Release Channel/genetics
13.
Neurology ; 101(15): e1495-e1508, 2023 10 10.
Article En | MEDLINE | ID: mdl-37643885

BACKGROUND AND OBJECTIVES: RYR1-related myopathies are the most common congenital myopathies, but long-term natural history data are still scarce. We aim to describe the natural history of dominant and recessive RYR1-related myopathies. METHODS: A cross-sectional and longitudinal retrospective data analysis of pediatric cases with RYR1-related myopathies seen between 1992-2019 in 2 large UK centers. Patients were identified, and data were collected from individual medical records. RESULTS: Sixty-nine patients were included in the study, 63 in both cross-sectional and longitudinal studies and 6 in the cross-sectional analysis only. Onset ranged from birth to 7 years. Twenty-nine patients had an autosomal dominant RYR1-related myopathy, 31 recessive, 6 de novo dominant, and 3 uncertain inheritance. Median age at the first and last appointment was 4.0 and 10.8 years, respectively. Fifteen% of patients older than 2 years never walked (5 recessive, 4 de novo dominant, and 1 dominant patient) and 7% lost ambulation during follow-up. Scoliosis and spinal rigidity were present in 30% and 17% of patients, respectively. Respiratory involvement was observed in 22% of patients, and 12% needed ventilatory support from a median age of 7 years. Feeding difficulties were present in 30% of patients, and 57% of those needed gastrostomy or tube feeding. There were no anesthetic-induced malignant hyperthermia episodes reported in this cohort. We observed a higher prevalence of prenatal/neonatal features in recessive patients, in particular hypotonia and respiratory difficulties. Clinical presentation, respiratory outcomes, and feeding outcomes were consistently more severe at presentation and in the recessive group. Conversely, longitudinal analysis suggested a less progressive course for motor and respiratory function in recessive patients. Annual change in forced vital capacity was -0.2%/year in recessive vs -1.4%/year in dominant patients. DISCUSSION: This clinical study provides long-term data on disease progression in RYR1-related myopathies that may inform management and provide essential milestones for future therapeutic interventions.


Muscular Diseases , Ryanodine Receptor Calcium Release Channel , Infant, Newborn , Child , Humans , Ryanodine Receptor Calcium Release Channel/genetics , Retrospective Studies , Cross-Sectional Studies , Muscular Diseases/epidemiology , Muscular Diseases/genetics , Muscle Hypotonia/pathology , Muscle, Skeletal/pathology , Mutation/genetics
15.
Neuromuscul Disord ; 33(7): 580-588, 2023 07.
Article En | MEDLINE | ID: mdl-37364426

Centronuclear myopathy (CNM) is a heterogeneous group of muscle disorders primarily characterized by muscle weakness and variable degrees of respiratory dysfunction caused by mutations in MTM1, DNM2, RYR1, TTN and BIN1. X-linked myotubular myopathy has been the focus of recent natural history studies and clinical trials. Data on respiratory function for other genotypes is limited. To better understand the respiratory properties of the CNM spectrum, we performed a retrospective study in a non-selective Dutch CNM cohort. Respiratory dysfunction was defined as an FVC below 70% of predicted and/or a daytime pCO2 higher than 6 kPa. We collected results of other pulmonary function values (FEV1/FVC ratio) and treatment data from the home mechanical ventilation centres. Sixty-one CNM patients were included. Symptoms of respiratory weakness were reported by 15/47 (32%) patients. Thirty-three individuals (54%) with different genotypes except autosomal dominant (AD)-BIN1-related CNM showed respiratory dysfunction. Spirometry showed decreased FVC, FEV1 & PEF values in all but two patients. Sixteen patients were using HMV (26%), thirteen of them only during night-time. In conclusion, this study provides insight into the prevalence of respiratory symptoms in four genetic forms of CNM in the Netherlands and offers the basis for future natural history studies.


Myopathies, Structural, Congenital , Respiration Disorders , Humans , Muscle, Skeletal , Retrospective Studies , Netherlands/epidemiology , Dynamin II/genetics , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/diagnosis , Mutation , Respiration Disorders/genetics
16.
Pediatr Transplant ; 27(6): e14561, 2023 09.
Article En | MEDLINE | ID: mdl-37345726

BACKGROUND: Mutations in the TTN gene, encoding the muscle filament titin, are a major cause of inherited dilated cardiomyopathy. Early-onset skeletal muscle disorders due to recessive TTN mutations have recently been described, sometimes associated with cardiomyopathies. CASE DESCRIPTION: We report the case of a boy with congenital core myopathy due to compound heterozygosity for TTN variants. He presented in infancy with rapidly evolving restrictive cardiomyopathy, requiring heart transplantation at the age of 5 years with favorable long-term cardiac and neuromuscular outcome. CONCLUSION: Heart transplantation may have a role in selected patients with TTN-related congenital myopathy with disproportionally severe cardiac presentation compared to skeletal and respiratory muscle involvement.


Cardiomyopathy, Restrictive , Heart Transplantation , Muscular Diseases , Male , Humans , Child , Child, Preschool , Connectin/genetics , Cardiomyopathy, Restrictive/complications , Cardiomyopathy, Restrictive/genetics , Muscular Diseases/genetics , Mutation
17.
J Neuromuscul Dis ; 10(4): 541-554, 2023.
Article En | MEDLINE | ID: mdl-37154182

BACKGROUND: Variants in RYR1, the gene encoding the ryanodine receptor-1, can give rise to a wide spectrum of neuromuscular conditions. Muscle imaging abnormalities have been demonstrated in isolated cases of patients with a history of RYR1-related malignant hyperthermia (MH) susceptibility. OBJECTIVE: To provide insights into the type and prevalence of muscle ultrasound abnormalities and muscle hypertrophy in patients carrying gain-of-function RYR1 variants associated with MH susceptibility and to contribute to delineating the wider phenotype, optimizing the diagnostic work-up and care for MH susceptible patients. METHODS: We performed a prospective cross-sectional observational muscle ultrasound study in patients with a history of RYR1-related MH susceptibility (n = 40). Study procedures included a standardized history of neuromuscular symptoms and a muscle ultrasound assessment. Muscle ultrasound images were analyzed using a quantitative and qualitative approach and compared to reference values and subsequently subjected to a screening protocol for neuromuscular disorders. RESULTS: A total of 15 (38%) patients had an abnormal muscle ultrasound result, 4 (10%) had a borderline muscle ultrasound screening result, and 21 (53%) had a normal muscle ultrasound screening result. The proportion of symptomatic patients with an abnormal result (11 of 24; 46%) was not significantly higher compared to the proportion of asymptomatic patients with an abnormal ultrasound result (4 of 16; 25%) (P = 0.182). The mean z-scores of the biceps brachii (z = 1.45; P < 0.001), biceps femoris (z = 0.43; P = 0.002), deltoid (z = 0.31; P = 0.009), trapezius (z = 0.38; P = 0.010) and the sum of all muscles (z = 0.40; P < 0.001) were significantly higher compared to 0, indicating hypertrophy. CONCLUSIONS: Patients with RYR1 variants resulting in MH susceptibility often have muscle ultrasound abnormalities. Frequently observed muscle ultrasound abnormalities include muscle hypertrophy and increased echogenicity.


Malignant Hyperthermia , Ryanodine Receptor Calcium Release Channel , Humans , Cross-Sectional Studies , Genetic Predisposition to Disease , Malignant Hyperthermia/diagnostic imaging , Malignant Hyperthermia/genetics , Malignant Hyperthermia/complications , Muscle, Skeletal/pathology , Mutation , Prospective Studies , Ryanodine Receptor Calcium Release Channel/genetics , Ultrasonography
18.
Brain ; 146(10): 4233-4246, 2023 10 03.
Article En | MEDLINE | ID: mdl-37186601

In utero exposure to maternal antibodies targeting the fetal acetylcholine receptor isoform (fAChR) can impair fetal movement, leading to arthrogryposis multiplex congenita (AMC). Fetal AChR antibodies have also been implicated in apparently rare, milder myopathic presentations termed fetal acetylcholine receptor inactivation syndrome (FARIS). The full spectrum associated with fAChR antibodies is still poorly understood. Moreover, since some mothers have no myasthenic symptoms, the condition is likely underreported, resulting in failure to implement effective preventive strategies. Here we report clinical and immunological data from a multicentre cohort (n = 46 cases) associated with maternal fAChR antibodies, including 29 novel and 17 previously reported with novel follow-up data. Remarkably, in 50% of mothers there was no previously established myasthenia gravis (MG) diagnosis. All mothers (n = 30) had AChR antibodies and, when tested, binding to fAChR was often much greater than that to the adult AChR isoform. Offspring death occurred in 11/46 (23.9%) cases, mainly antenatally due to termination of pregnancy prompted by severe AMC (7/46, 15.2%), or during early infancy, mainly from respiratory failure (4/46, 8.7%). Weakness, contractures, bulbar and respiratory involvement were prominent early in life, but improved gradually over time. Facial (25/34; 73.5%) and variable peripheral weakness (14/32; 43.8%), velopharyngeal insufficiency (18/24; 75%) and feeding difficulties (16/36; 44.4%) were the most common sequelae in long-term survivors. Other unexpected features included hearing loss (12/32; 37.5%), diaphragmatic paresis (5/35; 14.3%), CNS involvement (7/40; 17.5%) and pyloric stenosis (3/37; 8.1%). Oral salbutamol used empirically in 16/37 (43.2%) offspring resulted in symptom improvement in 13/16 (81.3%). Combining our series with all previously published cases, we identified 21/85 mothers treated with variable combinations of immunotherapies (corticosteroids/intravenous immunoglobulin/plasmapheresis) during pregnancy either for maternal MG symptom control (12/21 cases) or for fetal protection (9/21 cases). Compared to untreated pregnancies (64/85), maternal treatment resulted in a significant reduction in offspring deaths (P < 0.05) and other complications, with treatment approaches involving intravenous immunoglobulin/ plasmapheresis administered early in pregnancy most effective. We conclude that presentations due to in utero exposure to maternal (fetal) AChR antibodies are more common than currently recognized and may mimic a wide range of neuromuscular disorders. Considering the wide clinical spectrum and likely diversity of underlying mechanisms, we propose 'fetal acetylcholine receptor antibody-related disorders' (FARAD) as the most accurate term for these presentations. FARAD is vitally important to recognize, to institute appropriate management strategies for affected offspring and to improve outcomes in future pregnancies. Oral salbutamol is a symptomatic treatment option in survivors.


Arthrogryposis , Myasthenia Gravis , Neuromuscular Diseases , Pregnancy , Female , Adult , Humans , Immunoglobulins, Intravenous , Receptors, Cholinergic , Myasthenia Gravis/therapy , Myasthenia Gravis/complications , Autoantibodies , Arthrogryposis/complications
19.
Pediatr Neurol ; 141: 79-86, 2023 04.
Article En | MEDLINE | ID: mdl-36791574

BACKGROUND: Cockayne syndrome (CS) is a DNA repair disorder primarily associated with pathogenic variants in ERCC6 and ERCC8. As in other Mendelian disorders, there are a number of genetically unsolved CS cases. METHODS: We ascertained five individuals with monoallelic pathogenic variants in MORC2, previously associated with three dominantly inherited phenotypes: an axonal form of Charcot-Marie-Tooth disease type 2Z; a syndrome of developmental delay, impaired growth, dysmorphic facies, and axonal neuropathy; and a rare form of spinal muscular atrophy. RESULTS: One of these individuals bore a strong phenotypic resemblance to CS. We then identified monoallelic pathogenic MORC2 variants in three of five genetically unsolved individuals with a clinical diagnosis of CS. In total, we identified eight individuals with MORC2-related disorder, four of whom had clinical features strongly suggestive of CS. CONCLUSIONS: Our findings indicate that some forms of MORC2-related disorder have phenotypic similarities to CS, including features of accelerated aging. Unlike classic DNA repair disorders, MORC2-related disorder does not appear to be associated with a defect in transcription-coupled nucleotide excision repair and follows a dominant pattern of inheritance with variants typically arising de novo. Such de novo pathogenic variants present particular challenges with regard to both initial gene discovery and diagnostic evaluations. MORC2 should be included in diagnostic genetic test panels targeting the evaluation of microcephaly and/or suspected DNA repair disorders. Future studies of MORC2 and its protein product, coupled with further phenotypic characterization, will help to optimize the diagnosis, understanding, and therapy of the associated disorders.


Cockayne Syndrome , Microcephaly , Humans , Cockayne Syndrome/genetics , DNA Repair Enzymes/genetics , Phenotype , Microcephaly/genetics , Mutation/genetics , Transcription Factors/genetics
20.
Pract Neurol ; 23(1): 23-34, 2023 Feb.
Article En | MEDLINE | ID: mdl-36522175

Muscle cramps are painful, sudden, involuntary muscle contractions that are generally self-limiting. They are often part of the spectrum of normal human physiology and can be associated with a wide range of acquired and inherited causes. Cramps are only infrequently due to progressive systemic or neuromuscular diseases. Contractures can mimic cramps and are defined as shortenings of the muscle resulting in an inability of the muscle to relax normally, and are generally myogenic. General practitioners and neurologists frequently encounter patients with muscle cramps but more rarely those with contractures. The main questions for clinicians are: (1) Is this a muscle cramp, a contracture or a mimic? (2) Are the cramps exercise induced, idiopathic or symptomatic? (3) What is/are the presumed cause(s) of symptomatic muscle cramps or contractures? (4) What should be the diagnostic approach? and (5) How should we advise and treat patients with muscle cramps or contractures? We consider these questions and present a practical approach to muscle cramps and contractures, including their causes, pathophysiology and treatment options.


Contracture , Muscle Cramp , Humans , Muscle Cramp/etiology , Muscle Cramp/therapy , Muscle Cramp/diagnosis , Contracture/therapy , Contracture/complications
...